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A study of the reducibility of the Fock space representation of theq-deformed harmonic
oscillator algebra for real and root of unity values of the deformation parameter is carried
out by using the properties of the Gauss polynomials. When the deformation parameter
is a root of unity, an interesting result comes out in the form of a reducibility scheme
for the space representation which is based on the classification of the primitive or
nonprimitive character of the deformation parameter. An application is carried out for
a q-deformed harmonic oscillator Hamiltonian, to which the reducibility scheme is
explicitly applied.

KEY WORDS: q-deformed algebras;q-deformed harmonic oscillator; deformation
at roots of unity.

1. INTRODUCTION

In the last decadesq-deformed algebras (Drinfeld, 1987; Jimbo, 1986; Kulish
and Reshetikhin, 1983; Sklyanin, 1982) have been object of interest in the liter-
ature and a great effort has been devoted to its understanding and development
(Biedenharn and Lohe, 1995; Chaichian and Demichev, 1996; Chari and Pressley,
1995). In particular, the interest inq-deformed algebras resides in the fact that
they are deformed versions of the standard Lie algebras, and give them back
as the deformation parameterq goes to unity. Furthermore, since it is known
that the deformed algebras encompass a set of symmetries that is richer than that of
the Lie algebras, one is tempted to recognize that deformed algebras can be the
appropriate tool to be dealt with in describing symmetries of physical systems
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which cannot be properly treated within the Lie algebras, although the direct in-
terpretation of the deformation in these cases is sometimes incomplete or even
completely lacking. On the other hand, in some cases like the XXZ-model, where
the ferromagnetic/antiferromagnetic nature of a spin1

2 chain of lengthN can be
simulated through the introduction of aq-deformed algebra (Pasquier and Saleur,
1990), or the rotational bands in deformed nuclei and molecules which can be fit-
ted via aq-rotor Hamiltonian (Celeghiniet al., 1992; Iwao, 1990; Raychevet al.,
1990), instead of using the variable moment of inertia (VMI model), the phys-
ical meaning of the deformation parameter is established. Notwithstanding this
interpretation difficulty, from the original studies which appeared in connection
with problems related to solvable statistical mechanics models (Baxter, 1982) and
quantum inverse scattering theory (Sklyaninet al., 1979), a solid development
has emerged which encompass nowadays various branches of mathematical prob-
lems related to physical applications, such as deformed superalgebras (Chaichian
and Kulish, 1990), knot theories (Kauffman, 1990), noncommutative geometries
(Connes 1990; Manin 1988), many-body systems (Galettiet al., 1995), phase tran-
sition (Avanciniet al., 1995; Galettiet al., 1997; Galetti and Pimentel 1995) and so
on. The introduction of aq-deformed bosonic harmonic oscillator is a subject of
great interest in this context and, as a tool for providing a boson realisation of the
quantum algebrasuq(2), brought to light new commutation relations (Biedenharn,
1989; MacFarlane, 1989) which have been extensively discussed in the literature.

On the other hand, some concepts directly related to the arithmetical founda-
tions of deformed algebras were well known to mathematicians since a long time
(Andrews, 1975; Dickson, 1952; Gauss, 1866, 1863). For instance, the Gauss poly-
nomials appearing in restricted partition theory (Andrews, 1975) can be directly
interpreted as aq-generalization of the standard binomials; as such, the Gauss
polynomials, or theq-binomials, as they are sometimes known, also generalize
the concept of number as well. In that form, the Gauss extension of the number
concept, sometimes known asq-number (Andrews, 1986; Gasper and Rahman,
1990), is also related to the usualq-bracket of extensive use in deformed algebras.
In this connection, if, in general, the surprising effectiveness of number theory
seems not to be completely realized, the success of recent examples pervading
several areas can be credited to the use of that branch of science: solvable models
in statistical mechanics benefited from Rogers–Ramanujan–Baxter relations, com-
putation and cryptography, the fourth test on general relativity, dynamical systems,
and primitive-roots-of-unity-based reflecting gratings in concert halls have their
very foundations on basic number theory and algorithms (Stefan, 1992).

In this paper we want to address the question whether the extension of the
number concept proposed by Gauss, namely theq-numbers, can farther help us in
the study of theq-deformed harmonic oscillator. To this aim we are directly guided
by the central role played by the number concept in this context (Galettiet al.,
1998). Based on this, we introduce theQ-numbers as our starting point to define
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the action of the creation/annihilation operators on the Fock space states. From
this we show how we obtain a version of theq-deformed harmonic oscillator
algebra already discussed in the literature (Arik and Coon, 1976; Atakishiyev,
1996; Daoudet al., 1998) in other contexts, namely, theAq algebra. We also
discuss how a second set of operators obeying theq-deformed harmonic oscillator
algebra can be introduced, thēAq algebra, such that they satisfy the conjugate
relations with respect to theAq algebra, and discuss some possible reductions of
the algebra when we choose the allowed values of the deformation parameterq.
The cases for real and roots of unity values ofq are analysed. Furthermore, we
also show how the reducibility of the algebra space representation appears for the
different values ofq.

Using the algebrasAq and Āq we introduce a self-adjointq-deformed har-
monic oscillator Hamiltonian, akin to that proposed by Floratos and Tomaras
(Floratos and Tomaras, 1990) and related to a system of two anyons, which allows
us to test the reducibility criteria discussed before. This allows us to separate the
physical systems according to the different algebras obtained for the different val-
ues of the deformation parameterq. In this form, we show how it is possible to
distinguish different subsystems within the original oscillator Hamiltonian when
q assume nonprimitive roots of unity values. In this sense, we discuss the possi-
bility of uncovering the compositeness character of the so-calledk-fermions when
discussing the reducibility of the representation space forq-deformed oscillator
algebra at the roots of unity.

This paper is organized as follows: Section 2 is devoted to a brief review of
the Gauss polynomials (Q-numbers). In Section 3 we derive and discuss theq-
oscillator algebras from the extended number concept and in Section 4 we present
the conditions for the reducibility of the Fock space representation.q-Deformed
oscillator Hamiltonians are discussed in Section 5, where examples of how the
reducibility conditions sieve the space representation into subspaces are also ex-
hibited. Finally the conclusions are presented in Section 6.

2. GAUSS POLYNOMIALS: Q-NUMBERS

The generating function of restricted partitions of a positive integerN into at
mostm parts, each≤ n, is written as

G(n, m; q) = (1− qn+m)(1− qn+m−1) · · · (1− qm+1)

(1− q)(1− q2) · · · (1− qn)
, (1)

q 6= 1, and the Gauss polynomials are defined through the relation[
n
m

]
= G(n−m, m; q), (2)
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which is valid for 0≤ m≤ n, and zero otherwise (Andrews, 1975). The Gauss
polynomial is a polynomial of degreem(n−m) in q that presents a very important
property, namely

lim
q→1

[
n
m

]
=
(

n
m

)
, (3)

where
(n

m

)
is the standard binomial. Thus, we conclude that the Gauss polynomials

generalize the concept of binomials and, furthermore, as a special and important
case, withm= 1, the Gauss polynomial, that is now denotedQ-number, extends
the concept of number since

lim
q→1

[
n
1

]
=
(

n
1

)
= n. (4)

On the other hand, this polynomial also allows us to establish inner contact
with some aspects of number theory, since whenq is anth root of unity, we have[

n
1

]
= 1+ q + q2+ · · · + qn−1 = 1− qn

1− q
= 0. (5)

This is the fundamental equation whosen solutions are roots of unity; furthermore,
for n prime,n− 1 of these are primitive roots (Mathews).

Among the several relations satisfied by these polynomials a useful one, to
be used later, is worth of mention (Andrews, 1975)[

n
m

]
=
[

n− 1
m− 1

]
+ qm

[
n− 1
m

]
. (6)

3. Q-OSCILLATOR ALGEBRAS

Let us consider, as our starting point, the standard Fock space generated by
{|n〉},

a|0〉 = 0, (7)

a†|n〉 = √n+ 1|n+ 1〉, a|n〉 = √n|n− 1〉, (8)

and

N̂|n〉 = n|n〉, (9)

where the creation and annihilation operators obey the following commutation
relations

aa† − a†a = 1; [N̂, a†] = a†; [ N̂, a] = −a, (10)

from which it follows that

N̂ = a†a. (11)
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Since the number concept is inherent to the Fock description, we are strongly
motivated by the results of the previous section to construct a new pair of creation
and annihilation operators in such a form to deal with that generalized number
concept. To this aim we introduce new operators, whose matrix elements in the
Fock space involve the Gauss polynomials

a−|0〉 = 0 (12)

a+|n〉 =
√{n+ 1}q|n+ 1〉 (13)

a−|n〉 =
√{n}q|n− 1〉 (14)

N̂|n〉 = n|n〉 (15)

[ N̂, a+] = a+ (16)

[ N̂, a−] = −a−, (17)

althoughN̂ 6= a+a−. Here we have adopted the notation

{n}q ≡
[

n
1

]
. (18)

We can pose now the question: what is the algebra satisfied bya+ anda−?
Since

a−a+|n〉 = {n+ 1}q|n〉, (19)

a+a−|n〉 = {n}q|n〉, (20)

and considering relation (6), we conclude that

a−a+ − qa+a− = 1, (21)

that is aq-deformed commutation relation as already exhibited in the literature
(Arik and Coon, 1976; Atakishiyev, 1996; Daoudet al., 1998). That such a set of
operators indeed can be given out of the nondeformed harmonic oscillator operators
can be explicitely seen by the use of the Polychronakos realization (Appendix A).
In (Atakishiyev, 1996) relations (16), (17), and (21) are denotedAq algebra. We
can construct an̄Aq algebra out of the relations conjugated to those defining the
Aq algebra (16), (17), and (21):

[ N̂, a†+] = −a†+, (22)

[ N̂, a†−] = +a†−, (23)

a†+a†− − q∗a†−a†+ = 1. (24)

In principle, these operators act on the dual space (bra space) to the considered
Fock (ket) space. However, we can infer the action of these operators onto the ket
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space just by using the orthonormality of the states|n〉. It yields

a†−|n〉 =
(√{n+ 1}q

)∗|n+ 1〉, (25)

and

a†+|n〉 =
(√{n}q)∗|n− 1〉. (26)

With the above results, it is possible to examine if there is an algebra relating
the creation/anihilation operators of theAq algebra and their respective Hermitian
conjugates, constituents of thēAq algebra. Using the action of these operators over
the ket space, it is possible to obtain the following relations:

a−a†− = |{N̂ + 1}q|, (27)

a†−a− = |{N̂}q|, (28)

and similarly

a†+a+ = |{N̂ + 1}q|, (29)

a+a†+ = |{N̂}q|. (30)

Here we shall only consider cases whenq is real valued or a root of unity, which
are the most commonly found cases in the literature.

For realq it is possible to verify that

|{N̂}q| = {N̂}q, (31)

which together with Eqs. (29) and (30), and the recurrence relation of the Gauss
polynomials, Eq. (6), yields:

a−a†− − qa†−a− = 1. (32)

Similarly

a†+a+ − qa+a†+ = 1. (33)

In this case (realq), through Eqs. (13), (26), it is possible to identifya†− ≡ a+.
Whenq is the fundamental root of unity it can be, by its turn, verified that

|{N̂}q| = [ N̂]q1/2, (34)

where

[X]q = qX − q−X

q − q−1
(35)

defines theq-bracket ofX. Equation (34), together with Eqs. (29) and (30) yields

a−a†− − q
1
2 a†−a− = q−

N̂
2 . (36)
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Similarly

a†+a+ − q
1
2 a+a†+ = q−

N̂
2 . (37)

The last two equations characterize theq-oscillator algebra introduced by
Biedenharn and McFarlane (Biedenharn, 1989; MacFarlane, 1989).

On the other hand, whenq is a root of unity, except the fundamental one,
Eq. (34) is no longer valid, instead

|{N̂}q| = |[ N̂]q1/2|. (38)

Using the definition of theq-bracket, Eq. (35), whenq is a general root
of unity, qj = exp(2π i

m j ), a relation between [k]
q

1
2
j

and its m-complementar
[m− k]

q
1
2
j

, can be directly obtained

[m− k]
q

1
2
j

= ei πm j (m−k) − e−i πm j (m−k)

ei πm j − e−i πm j
= (−1) j−1 ei πm jk − e−i πm jk

ei πm j − e−i πm j

[m− k]
q

1
2
j

= (−1) j−1[k]
q

1
2
j

. (39)

Whenq is the fundamental root of unity thenj = 1, and we have

[m− k]
q

1
2

1

= [k]
q

1
2

1

. (40)

Furthermore, for the case of the inverse of such root of unity,q−1
j = exp(− 2π i

m j ) =
exp[2π i

m (m− j )], we can verify in exactly the same way that

[k]
q
− 1

2
j

= (−1)k−1[k]
q

1
2
j

. (41)

Now, using Eqs. (39)–(41) we obtain the following additional relation

[m− k]
q
− 1

2
j

= (−1)m−k−1[m− k]
q

1
2
j

. (42)

These relations will be shown to be useful when we deal withq-oscillator Hamil-
tonians in finite-dimensional spaces.

4. REDUCIBILITY OF THE FOCK REPRESENTATION

Now, considering the actions ofa+ and a− on the Fock representation,
Eqs. (13) and (14), we will analyze its reducibility properties. The various possi-
bilities are studied below.

A. First case:{n}q = 0, ∀n > 0

All states of the{|n〉} representation can be obtained through successive ap-
plications ofa+ over the vacuum. In that case,{|n〉} is irreducible with respect to
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the algebra{a−, a+, N̂, I }.

B. Second case:{m}q = 0, {n}q 6= 0, ∀n, 0 < n < m

In that case

a+ | m− 1〉 = 0, (43)

and also

a− | m〉 = 0, (44)

From these results it follows that the subspace generated by{|0〉, |1〉, . . . , |m− 1〉}
is invariant under the action of the set{a−, a+, N̂, I }, and it is then anirrep of
dimensionm of the deformed algebra. For allq 6= 1, i.e., deformed cases, the
hypothesis{m}q = 0, {n}q 6= 0,∀n, 0 < n < m can be written as

qm − 1

q − 1
= 0,

qn − 1

q − 1
= 0, ∀n, 0 < n < m (45)

qm = 1, qn = 1, ∀n, 0 < n < m, (46)

which is the definition of the primitivemth roots of unity. Therefore there will
always beirrepsof dimensionm wheneverq is a primitivemth root of unity.

C. Third case: ∃l , 0 < l < m {m}q = 0, {l }q = 0

This is the equivalent to state thatq is a nonprimitive root of unity. Let us
also suppose thatl is the smallest integer satisfying the hypothesis above, i.e., it is
the smallest number for whichql = 1. Then

qk = 1, ∀k, 0 < k < 1, (47)

and therefore the subspace generated by{|0〉, |1〉, . . . , |m− 1〉} is reducible in
irrepsof dimensionl .

Labelling them− 1 roots of unity as

qj = e2π i j
m , j = 1, 2,. . . , m− 1, (48)

and forr the greatest common divisor (GCD) ofm and j , i.e.,

j = rs

m = rl , (49)

wheres/ l is an irreducible fraction, then

qj = e2π i s
l . (50)

In this way, the subspace generated by{|0〉, |1〉, . . . , |m− 1〉} is reducible, as we
saw, inirrepsof dimensionl , which is the smallest value for whichql

j = 1.
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Then, for eachmth root of unity labelled byj , the dimension of theirrepswill
bel = m/r , wherer is the GCD ofj andm, and them-dimensional representation
breaks intor irreps of dimensionl = m/r .

5. q-DEFORMED OSCILLATOR HAMILTONIAN

We can obtain aq-deformed Hermitian oscillator Hamiltonian from the de-
formed operator algebra presented above through the direct construction

H = 1

2
hω(a−a†− + a†−a−) = 1

2
hω(a+a†+ + a†+a+), (51)

that can be written, in general, as

H = 1

2
hω
(√
{N̂ + 1}q{N̂ + 1}q +

√
{N̂}q{N̂}q∗

)
, (52)

which is equivalent to

H = 1

2
hω(|{N̂ + 1}q| + |{N̂}q|). (53)

As was discussed in the preceding sections

|{N̂}q| =
{
{N̂}q, for q a real number∣∣{N̂}q1/2

∣∣, for q a root of unity.
(54)

So, for realq, the Hamiltonian, Eq. (51), is written as

H = 1

2
hω({N̂ + 1}q + {N̂}q), (55)

and, forq being a root of unity, it can be easily seen to reduce to

H = 1

2
hω
(∣∣[ N̂ + 1]q1/2

j

∣∣+ ∣∣[ N̂]q1/2
j

∣∣). (56)

However, whenq is furthermore singled out as the fundamental primitive root of
unity, the above expression, according to Eq. (34), reduces to

H = 1

2
hω
(
[ N̂ + 1]q1/2

1
+ [ N̂]q1/2

1

)
, (57)

which is the usual proposal for theq-deformed oscillator (Biedenharn, 1989).
This last expression has the symmetryq→ q−1, since this is a symmetry of the
q-bracket itself.

Since the deformed oscillator Hamiltonian is written directly in terms of the
q-brackets of the operator̂N, the reducibility properties of the Fock representation
space will appear in the spectrum of that operator as well. In this sense, the spectrum
will be broken into blocks associated to subspaces of prime dimension whenever
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the initial space dimension is a composite integer number and we work with the
nonprimitive roots of unity.

As an application of what has been presented above we will discuss some
simple cases. In this connection, we need not to work with all the roots of unity
due to the properties presented for theq-brackets in the previous sections. In
fact, using relations (39)–(42), we need not calculate the matrices representing the
Hamiltonian for some primitive roots.

First, let us considerm= 2. In this case, the matrix representing the
q-deformed oscillator Hamiltonian is directly written since we only have to work
with the fundamental primitive root of unity,q1/2

1 = exp(i π2 ). Using the fact that
[2]q1/2

1
= 0, we get

H = 1

2
hω

(
[1]q1/2

1
0

0 [1]q1/2
1

)
= 1

2
hω

(
1 0
0 1

)
. (58)

For m= 3, which is the next prime number, and also using Eq. (40), we get for
the fundamental primitive root of unity,q1/2

1 = exp(i π3 ),

H = 1

2
hω

 [1]q1/2
1

0 0
0 [1]q1/2

1
+ [2]q1/2

1
0

0 0 [2]q1/2
1

 = 1

2
hω

1 0 0
0 2 0
0 0 1

 . (59)

If we now consider the casem= 6, we can verify how the matrix representing
the Hamiltonian breaks into blocks, each with a prime dimension, as occurs in
the representation space of theq-deformed algebra. To this end, let us first of
all consider the Hamiltonian associated to the fundamental primitive root of unity,
q1/2

1 = exp(i π6 ). In this case, using Eq. (39), we see that the matrix is also symmetric
and has the form

H = 1

2
hω



1 0
1+ [2]q1/2

1

[2]q1/2
1
+ [3]q1/2

1

[3]q1/2
1
+ [2]q1/2

1

0 [2]q1/2
1
+ 1

1

 (60)

Now, if we consider the nonprimitive roots ofm= 6, we see that there are
three of them, namely,q1/2

2 = exp(i π6 2), q1/2
3 = exp(i π6 3), andq1/2

4 = exp(i π6 4),
respectively. In fact,q2 is the inverse ofq4 andq3 is its own inverse. For the first
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root the Hamiltonian matrix will be

H = 1

2
hω


1

2 0
1

1
0 2

1

 , (61)

which breaks into two blocks, each one being the matrix associated to am= 3
q-deformed oscillator. On the other hand, for the second nonprimitive root of unity,
q1/2

3 = exp(i π6 3), we get

H = 1

2
hω


1

1 0
1

1
0 1

1

 . (62)

The three blocks associated to them= 2 q-deformed oscillator are readily seen
in this case. Since the Hamiltonian is given by (56), and using Eq. (41), we can
conclude that the same matrices would be obtained if the inverse roots of unity
were used. Therefore, for prime dimension spaces the matrices representing the
deformed oscillator Hamiltonian are irreducible for any primitive root of unity.
For nonprime integer space dimension and deformations at thenonprimitive roots
of unity, theq-deformed oscillator represents in fact a composite system with as
many irreducible constituents (diagonal blocks) as are the number of prime factors
of the starting space dimension.

6. CONCLUSIONS

In the present paper, starting from the Gauss extension of the number con-
cept, we have reobtained theq-deformed harmonic oscillator algebra discussed
in (Arik and Coon, 1976; Atakishiyev, 1996) for general deformation parameter
q. For the particular case ofq being a fundamental root of unity, we recover the
deformed harmonic oscillator algebra satisfied bya−(+) anda†−(+) as introduced
by Biedenharn and MacFarlane (Biedenharn, 1989; MacFarlane, 1989). On the
other hand, some useful relations between the Gauss polynomials and the standard
q-bracket have also been discussed forq a root of unity.

A discussion on the dimensions of the Fock state space representation forq
real or a root of unity shows that they can be infinite as well as finite-dimensional
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depending onq being real or a root of unity, as it has been already pointed out.
However, as a further conclusion, it is also shown that, for the particular case
of q being selected as a nonprimitive root of unity, the representation space, be-
sides being finite-dimensional, also breaks into subspaces, the dimension of each
block being clearly defined by the prime decomposition of the number charac-
terizing the original space dimension. In this form, it is shown that the use of
nonprimitive roots of unity allows one to verify the reducibility character of the
Fock space representation, which, by its turn, shows that the subspaces charac-
terized by prime dimensions play the role of fundamental blocks within the full
space.

A q-deformed harmonic oscillator Hamiltonian was presented which allowed
us to fully exploit the Fock space reducibility discussed previously. For the cases
whenq was a primitive root of unity, the Hamiltonian matrix only exhibited the
usual symmetries of the Q-numbers, while forq being a nonprimitive root of
unity (which will occur only when the space dimension is a composite number)
the matrices reduced to submatrices along the diagonal, thus indicating that the
original q-deformed oscillator is in fact made up of irreducible subsystems, each
one of them of a prime dimension. This result strongly suggests the conclusion
that the so calledk-fermions, or quons, discussed in the context of roots of unity
deformation, are not necessarily fundamental entities, but they may be, in some
cases, composite systems made up of entities of more fundamental character. This
characterization can be directly verified by studying the degree of reducibility of
the space representation through the prime decomposition of the space dimension
from which we started.

APPENDIX A: POLYCHRONAKOS REALIZATION

We start from the fundamental relation (21) which clearly reduces to the
classical oscillator algebra whenq→ 1. We recall the Polychronakos realization
(Polychronakos, 1990):

a− = U−(q, N̂)a

a+ = U+(q, N̂)a†, (A1)

whereN̂ is the usual nondeformed number operator. Using Eq. (A1) in Eq. (21)
we obtain:

F(q, N̂ + 1)− q F(q, N̂) = 1, (A2)

where

F(q, N̂ + 1)= U+(q, N̂)U−(q, N̂ − 1)N̂. (A3)
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Representing Eq. (A3) on the Fock space{|n〉} we get:

F(q, n+ 1)− q F(q, n) = 1. (A4)

which is the recurrence relation (6) for the Gauss polynomials. We then may infer

a+a− = g(q, N̂) (A5)

a−a+ = g(q, N̂ + 1), (A6)

or in terms ofF

F(q, N̂) = g(q, N̂). (A7)

In order to fulfil the deformed algebra, it is enough that

U+(q, N̂)U−(q, N̂ − 1)N̂ = g(q, N̂). (A8)

Choosing

U−(q, N̂ − 1)=
√
{N̂}q

N̂
, U−(q, N̂) =

√
{N̂ + 1}q

N̂ + 1
, (A9)

we obtain

U+(q, N̂) =
√
{N̂}q

N̂
. (A10)

Therefore

a− = a

√
{N̂}q

N̂
(A11)

a+ = a†

√
{N̂ + 1}q

N̂ + 1
. (A12)

This choice guarantees the unitarity (a+ = a†−) whenq is a real parameter. Other-
wise, the representation turns out to be nonunitary.
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